The Nucleon Axial-Vector Form Factor for Precision Neutrino Oscillation Studies

Aaron Meyer (asmeyer2012@uchicago.edu)

University of Chicago/Fermilab

June 14, 2016

Motivation

$$\Phi(E_{\nu}) = \frac{\mathcal{N}(E_{\nu})}{\sigma_{A}(E_{\nu})}$$

Oscillation experiments monitor flux by counting interactions assuming cross section, near/far detector do not perfectly cancel

⇒ Measurements of neutrino oscillation depend on precise knowledge of neutrino cross section

$$\sigma_A \sim \sigma_{CCQE} \otimes (\text{nucl. models})$$

 $(\sigma_{CCQE}(E_{\nu},Q^2))$ is quadratic function of form factors)

- Nuclear effects entangled with nucleon amplitudes
 factorization is oversimplification
- Model-dependent shape parameterization introduces systematic uncertainties and underestimates errors

Discrepancies in the Axial-Vector Form Factor

 σ_{CCQE} dependent on form factors: $F_{1V}(Q^2)$, $F_{2V}(Q^2)$, $F_{A}(Q^2)$, $F_{P}(Q^2)$

Most analyses assume the "Dipole form factor":

$$F_A^{ ext{dipole}}(Q^2) = g_A rac{1}{\left(1 + rac{Q^2}{m_A^2}
ight)^2}$$

Dipole is an ansatz:

unmotivated in interesting Q^2 (4-momentum) region ⇒ uncontrolled systematics and underestimated uncertainties

Large variation in m_A over many experiments: $m_{\Delta}^{\rm eff} = 1.35 \pm 0.17$ (MiniBooNE, 1002.2680[hep-ph]) $m_A = 1.026 \pm 0.021$ world avg. QE (Bernard et. al, 0107088[hep-ph])

Essential to replace with model-independent parameterization

z-Expansion

The z-Expansion (Bhattacharya, Hill, Paz arXiv:1108.0423 [hep-ph]) is a conformal mapping which takes the kinematically allowed region ($t \le 0$) to within $z = \pm 1$

$$z(t; t_0, t_c) = \frac{\sqrt{t_c - t} - \sqrt{t_c - t_0}}{\sqrt{t_c - t} + \sqrt{t_c - t_0}} \qquad F_A(z) = \sum_{n=0}^{\infty} a_n z^n$$

$$(t = q^2 = -Q^2, t_c = 9m_{\pi}^2)$$

$$\frac{|t|}{-Q_{\max}^2} \frac{|z|}{9m_{\pi}^2}$$

Advantages of z-Expansion

- z-Expansion is a model-independent description of the axial form factor
 - Motivated by analyticity arguments
 - Only a few coefficients needed to accurately represent form factor
 - Provides a prescription for introducing more parameters as data improves
 - Allows quantification of systematic errors
 - Coefficient falloff required by perturbative QCD

Deuterium Fitting (1603.03048[hep-ph])

with Richard Hill, Rik Gran, Minerba Betancourt

Fits to deuterium bubble chamber data (relatively small nuclear effects)

Three datasets:

- ANL 1982: 1737 events, 0.5GeV [peak]
- BNL 1981: 1138 events, 1.6 GeV [average]
- FNAL 1983: 362 events, 20 GeV [peak], 27 GeV [average]

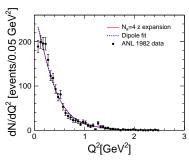
Shape-only fits to QE differential cross section data

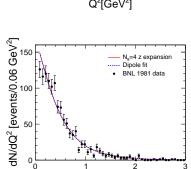
Gaussian priors used on z-Expansion coefficients:

if (k
$$\leq$$
 5) $\sigma_k =$ 5, else $\sigma_k = 25/k$

Sum rules applied to enforce large Q^2 falloff

Deuterium Fits - Differential Cross Section





Q²[GeV²]

Dinolo:

Dipole.	
χ^2/N_{bins}	58.6/49
$\overline{m_A}$	1.02(5)

z-Expansion:

= = 1, p a				
$\chi^2/N_{\rm bins}$	60.9/49			
a_1	2.25(10)			
a_2	0.2(0.9)			
a_3	-4.9(2.4)			
a₄	2.7(2.7)			

Dipole:

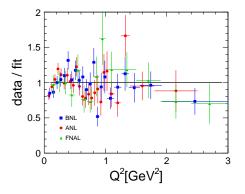
$\dot{\chi}^2/N_{\rm bins}$	70.9/49
m_A	1.05(4)

z-Expansion:

$\chi^2/N_{\rm bins}$	73.4/49		
a_1	2.24(10)		
a_2	0.6(1.0)		
a_3	-5.4(2.4)		
⁴ □ å₄ ⁴ 🗗 🕨	2.2(2.7)		

Residuals

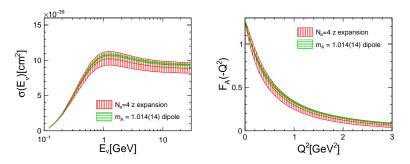
Residuals indicate potentially correlated effect between experiments



Neither z expansion, nor dipole can properly explain shape of data \implies underestimated systematic effects

Final Fits

Final fits include systematics of acceptance corrections, deuterium nuclear corrections



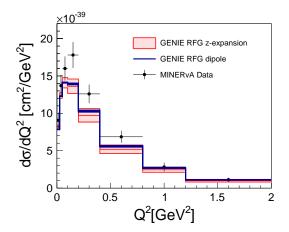
Calculated observables:

$$r_A^2 = 0.46(22) \, \mathrm{fm}^2 \,, \quad \sigma_{\nu n \to \mu p}(E_{\nu} = 1 \, \mathrm{GeV}) = 10.1(0.9) \times 10^{-39} \mathrm{cm}^2$$
 compared with Bodek *et. al* [Eur. Phys. J. C 53, 349]:

$$r_A^2 = 0.453(13) \, \text{fm}^2 \,, \quad \sigma_{\nu n \to \mu p}(E_{\nu} = 1 \, \text{GeV}) = 10.63(0.14) \times 10^{-39} \text{cm}^2$$

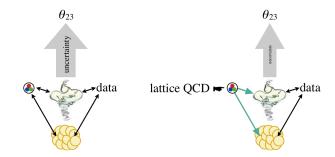
z Expansion in GENIE

To be officially released in production version 2.12 Currently available in GENIE "trunk" version



Lattice QCD in Neutrino Physics

- LQCD measurements becoming more accurate, precise
 ⇒ now able to inform neutrino experiment
- LQCD enables clean measurement of form factors (no nuclear corrections, no experiment systematics)
- Offers way of breaking measurement degeneracy between nuclear models, nucleon form factors
- Less explosive than hydrogen!

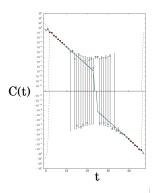


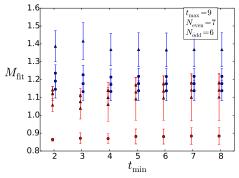
Current Lattice Effort

LQCD calculation of form factors underway by MILC/Fermilab Lattice Collaborations

Lattice computation involves several stages, building up to result: 2-point functions = masses, overlap factors

$$\lim_{t \to \infty} \langle N(0) | N(t) \rangle \sim |a|^2 e^{-m_N t}$$

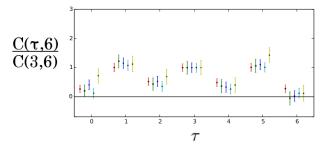




Lattice QCD Axial Form Factor

Use 2-point functions to calculate 3-point functions = form factors

$$\lim_{\tau,t\to\infty} \left\langle N'(0) |\, A_\mu(x,\tau) \, |\, N(t) \right\rangle \sim F_A(Q^2) |a|^2 e^{-m_N \tau} e^{-m_N (t-\tau)} e^{-iq\cdot x}$$



Ratio taken \rightarrow poor-man's blinding

Conclusions

Neutrino physics is subject to underestimated and model-dependent systematics

- ightarrow To reduce systematics from modeling, need to understand nuclear physics
- → To understand nuclear physics, need to understand nucleon-level cross sections from an ab initio calculation
 - z-Expansion removes model assumptions and permits better understanding of systematic errors
 - hydrogen (deuterium) targets have relatively small nuclear effects
 - LQCD offers a way to access nucleon form factors directly

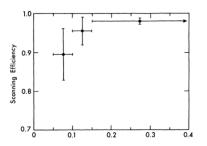
Thanks!

Backup Slide(s)

Acceptance Corrections

Acceptance correction for fixing errors from hand scanning Q^2 dependent correction, correlated between bins:

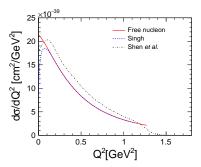
$$rac{dN}{e(Q^2)}
ightarrow rac{dN}{e(Q^2) + \eta \, de(Q^2)} \, , \quad \eta = 0 \pm 1$$



For ANL, BNL, FNAL respectively, $\eta = -1.9, -1.0, +0.01$; minimal improvement of goodness of fit

Deuterium Corrections

Corrections assumed to be E_{ν} independent Two corrections tested: Singh Nucl. Phys. B 36, 419, Shen 1205.4337 [nucl-th]



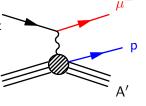
Central values of Shen, Singh are consistent with each other Final fit done with Singh, inflated error bars

Nuclear Effects

Nuclear effects not well understood

→ Models which are best for one measurement are worst for another

Need to break F_A /nuclear model entanglement



(assumed $m_A = 0.99$ GeV)

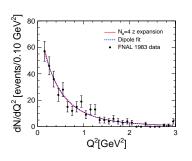
 ν_{μ}

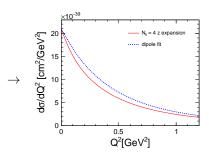
NuWro Model	RFG	RFG+	assorted
(χ^2/DOF)	[GENIE]	TEM	others
leptonic(rate)	3.5	2.4	2.8-3.7
leptonic(shape)	4.1	1.7	2.1-3.8
hadronic(rate)	1.7[1.2]	3.9	1.9-3.7
hadronic(shape)	3.3[1.8]	5.8	3.6-4.8

(Minerva collaboration, 1305.2243,1409.4497[hep-ph])

Normalization Degeneracy

Despite similarity of dipole/z expansion, cross sections not the same





Consequence of self-consistency: cross section prediction

$$\frac{dN}{dE} \propto \frac{1}{\sigma} \frac{d\sigma}{dQ^2}$$

Cross section shape controlled by low- Q^2 data, normalization